3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Добавки в воду для систем отопления

Подготовка воды для системы отопления

Правильная подготовка воды для системы отопления очень важна для владельцев частных домов, ведь отсутствие должного внимания к выбору теплоносителя может неблагоприятно сказаться на состоянии всех элементов отопительной системы.

Содержание в воде посторонних механических примесей, тяжелых металлов и солей, а также повышенная жесткость, чреваты рядом последствий:

  • разрушением стенок труб и котла из-за реакции с химически активными веществами;
  • коррозией материала и образованием накипи;
  • выходом из строя радиаторов и теплообменников;
  • ухудшением проходимости теплоносителя и снижением скорости воды в отдельных элементах системы;
  • снижением показателя теплоотдачи до 20-25%;
  • перерасходом топлива и пр.

Для сетей отопления требуется особенная вода, прошедшая все стадии очистки и обработки. Предварительная водоподготовка для системы отопления позволит избежать преждевременного ремонта котельной, замены радиаторов и котла.

Какую воду можно заливать в систему отопления?


Определить химический состав и пригодность выбранного вами теплоносителя можно путем проведения специализированных тестов. Данные услуги предоставляют сертифицированные лаборатории, гарантируя высокую точность и достоверность данных.

В домашних условиях подготовка воды для системы отопления может осуществляться при помощи набора для экспресс-анализа воды.
Он определяет показатели ph и жесткости, а также выявляет наличие узкого ряда компонентов: железо, марганец, сульфиды, фториды, нитриты и нитраты, аммоний, хлор.

Определив концентрацию реагентов в составе теплоносителя необходимо привести их значение к определенному уровню:

  1. Наличие растворенного кислорода около 0,05 мг/куб.м. либо его полное отсутствие.
  2. PH или степень кислотности в пределах 8.0 — 9.5
  3. Содержание железа не более 0,5-1 мг/л
  4. Показатель жесткости около 7-9 мг экв/л

Концентрацию всех веществ необходимо проверять как минимум один раз в полгода.

Болезнетворные микроорганизмы, содержащиеся в воде, могут значительно ухудшить качество теплоносителя и образовать на стенках системы слизистую пленку, мешающую работе системы.

Не следует забывать о некоторых свойствах воды: полностью обессоленная мягкая вода с повышенной кислотностью является идеальной средой для образования коррозии за счет присутствия кислорода и диоксида углерода.
Но их минимальное содержание в составе воды вызывает лишь незначительные процессы электрохимической коррозии.

Увеличение температуры воды в трубах отопления приводит к изменению уровня кислотности.

Примеси солей, содержащиеся в неочищенной воде, являются источником образования накипи. В то же время они понижают уровень кислотности и являются «естественным» средством, предотвращающим коррозию металла.
Их полное удаление нежелательно при очистке воды.

Способы подготовки воды для отопительных систем


Часть недостатков при подготовке воды для системы отопления устраняется путем предварительной термической обработки и фильтрации.

В остальных случаях теплоноситель разбавляется специальными присадками и реагентами, придавая ему необходимые свойства.

Какими методами можно воспользоваться при подготовке воды перед заполнением системы отопления?

  1. Изменение состава воды путем добавления реагентов, то есть химически активных веществ.
  2. Каталитическое окисления для выведения излишков железа в осадок.
  3. Применение механических фильтров различных размеров и конструкций.
  4. Смягчение воды посредством обработки электромагнитными волнами.
  5. Термическая обработка: кипячение, замораживание или дистилляция.
  6. Отстаивание воды в течение определенного промежутка времени.
  7. Деаэрация воды в целях выведения кислорода и углекислого газа и пр.

Предварительная фильтрация воды поможет удалить не нужные механические загрязнения и взвешенные частицы (камни, песок, мелкая глина и грязь и пр.).

Для очистки воды с незначительными загрязнениями применяются фильтры с промывными или сменными типами картриджей.
Сильно загрязненную воду пропускают через фильтры с двойным слоем кварцевого песка, активированного угля, керамзита или антрацита.

Длительное кипячение способствует выведению оксида углерода и значительному смягчению воды, но все-таки не позволяет полностью вывести из нее карбонат кальция.

Почему необходимо смягчать воду?

Заполнение системы отопления водой, не прошедшей процесс очистки, значительно повышает риск преждевременного износа и выхода из строя некоторых элементов отопительной системы.

Умягчение воды заключается в снижении показателя содержании ионов магния и кальция. Добиться необходимого результата можно несколькими способами.

Использование специальных фильтров на основе ряда компонентов: гашеной извести, гидроксида натрия и кальцинированной соды. Данные вещества тесно связывают растворенные в воде ионы магния и кальция, предотвращая их дальнейшее попадание в очищенный теплоноситель.

Не менее действенным приспособлением являются фильтры на основе мелкозернистой ионообменной смолы. Действие данной системы заключается в замене ионов магния и кальция на ионы натрия.

Читать еще:  Жидкость для труб отопления незамерзающая

Под воздействием магнитных смягчителей воды ионы магния и калия утрачивают свою способность выпадать в виде твердого осадка и преобразуются в рыхлый шлам, который необходимо вывести из состава воды.

Выбор того или иного способа подготовки воды для системы отопления полностью зависит от ее типа. Дл каждой отопительной системы предусмотрены свои особенности и рекомендации в зависимости от типа и качества исходного материала.

Антикоррозионная присадка

Антикоррозийная присадка – комплекс химических соединений, который защищает металлическую поверхность от коррозии, возникающей при комбинированном воздействии воды, кислорода, оксидов металлов и прочих коррозионно-активных веществ на поверхность металлов. Распространенные присадки:

  • Неорганические: дву- и три замещённые фосфаты щелочных металлов, силикаты, нитритные комплексы и т.д.
  • Органические: соли моно-, ди-, трикарбоновых кислот (карбоксилаты), азольные соединения, амины и т.д.

Целесообразность использования

Увеличение температуры на каждые 10 градусов ускоряет протекание коррозионных процессов в 2-4 раза. Параллельно снижается способность воды растворять сульфаты и карбонаты щелочных металлов. Это приводит к ускоренному образованию накипи и шламовых отложений, засорению трубопроводов, ухудшению пропускной способности.

Ингибитор коррозии сам по себе не в состоянии защитить от образования налета в системе охлаждения, так как процесс образования налета зависит от «чистоты» применяемой воды (жесткости, содержания карбонатов, сульфатов и т.д.). Противокоррозионная присадка в зависимости от своего состава может частично или полностью удалить образованные отложения (путем перевода их в жидкое состояние – в этом случае раствор мутнеет), но эффект будет временный.

Критерии выбора присадок для систем отопления

  • Механизм действия антикоррозийной присадки на металлическую поверхность: пассивирующий или абсорбирующий. Пассивирующие присадки для системы отопления образуют на поверхности защитный слой, абсорбирующие вступают в электрохимическую реакцию с верхними слоями металла и активно взаимодействуют на очаг коррозии блокируя их развитие.
  • Химические типы присадкок: неорганическая, органическая.

Разработанные производителями ингибиторы коррозии для систем отопления имеют схожие свойства:

  • Защищают от коррозии все типы металлических поверхностей;
  • Снижают адгезию водорастворимых компонентов в теплоносителе;
  • Сохраняют первоначальные рабочие характеристики при нагреве до температуры до 100 градусов;
  • Обеспечивают защиту трубопроводов и элементов отопительных систем до 10 лет;

Виды антикоррозийных присадок по составу

При выборе ингибитора коррозии учитывается кислотность и жесткость теплоносителя, инженерные особенности системы отопления. В зависимости от основы антикоррозийные присадки делятся на:

  • Фосфатные. Группа неорганических присадок объединяет ортофосфатные, полифосфатные и фосфонатные ингибиторы коррозии. Используются в отопительных системах из черных металлов. Оптимальная концентрация – 10-20 мг вещества на литр теплоносителя.
  • Молибдатные. Используются для защиты инженерных систем из черных металлов и алюминия. Оптимальная концентрация – 75-150 мг на литр теплоносителя. Для экономии присадок без ухудшения эксплуатационных свойств допустимо добавление фосфорных компонентов. Повышенная жесткость воды вызывает выпадение молибдатов в осадок, а хлор и сернистые примеси в составе теплоносителя снижают защитные свойства.
  • Силикатные. Используются в системах отопления, в которых теплоноситель – мягкая дистиллированная вода. Обеспечивает защитное покрытие на поверхности из черных металлов и меди на протяжении нескольких недель. Бензотриазольные и толитриазольные. Используются для защиты от коррозии медных сплавов.
  • Полиакриоатные, полималеатные и их производные. Защищают системы отопления от биологических загрязнений.
  • Нитритные. Применяются в закрытых системах отопления. Защитный эффект обеспечивается образованием на поверхности устойчивой пленки из оксида железа. Оптимальная коцентрация – 250-1000 мг на литр теплоносителя. Нитриты и прочие соединения азота неустойчивы к биологическому воздействию, поэтому в состав вводятся неокисляющиеся бактерициды и полимерные диспергаторы.
  • Карбоксилатные. Альтернативная замена неорганических ингибиторов коррозии. Соли органических карбоновых кислот избирательно воздействуют на поверхность металла. На ней не образуется пассивирующая пленка, антикоррозийная присадка воздействует только на очаг коррозии. Эта особенность снижает расход ингибитора, не ухудшает свойства теплоносителя, продлевает рекомендуемый срок эксплуатации до 5 и более лет.

Готовим воду для системы отопления

По ряду объективных причин вода остается самым популярным теплоносителем для систем отопления. Такая популярность легко объяснима:

прежде всего, это повсеместная доступность воды и ее дешевизна;

воде практически нет равных по теплотехническим показателям. Удельная теплоемкость воды составляет 4,187 Дж/(кг*К), а плотность 977 г/дм³. Такие характеристики обеспечивают самую высокую теплоотдачу по сравнению с другими техническими жидкостями;

абсолютная безопасность для человека. Какая бы не случилась протечка, она никогда не будет сопряжена с риском получения химических отравлений, созданием предпосылок к возгоранию;

Читать еще:  Жидкость для заполнения системы отопления частного дома

конструкция и материалы оборудования (например, котла) изначально рассчитаны на работу с водой.

В то же время воде присущи недостатки, ограничивающие ее использование:

на первом месте, конечно, стоит замерзание воды. В зимний период, при отрицательных температурах оставить воду в выключенной системе отопления даже на непродолжительное время – это прямой путь к аварии;

химический состав воды к сожалению не ограничивается известной формулой H2O – вода обычно содержит немалую концентрацию солей, растворенного железа, сероводорода и других примесей, которые со временем откладываются в виде осадка на стенках труб, сужая проход, снижая проводимость контура отопления и уменьшая теплопроводность радиаторов, при этом страдают теплообменники или нагревательные элементы котлов.

Срезы заросших отложениями трубНакипь на нагревателе (ТЭНБ)

Рассмотрим возможные процедуры превращения воды в подходящую консистенцию

Кипячение воды — правда, такая мера способствует удалению лишь нестойких карбонатных солей, но и это уже что-то. В кипячении больших объемов воды могут возникнуть сложности, поэтому рассмотрим еще и второй пункт.

Использование специальных фильтров-смягчителей, работающих на реагентном, ионообменном или электромагнитном принципах действия. Такие изделия продаются в специализированных магазинах и многие из них рассчитаны именно для очистки воды в котлах.

Добавка в воду специальных реагентов для ее умягчения, например, кальцинированной соды или ортофосфата натрия.

Пример нескольких типов умягчителей воды для систем отопления

    Предусмотреть в системе фильтры-грязевики, которые станут удалять из воды выпадающие нерастворимые осадки.

    Еще одним подходом может стать использование дистиллированной воды, ее не сложно приобрести в строительных магазинах.

    Организовать на своем участке сбор дождевой воды. Безусловно, она далека от «лабораторной чистоты», но определенную природную дистилляцию и очищение уже прошла. После отстаивания и фильтрации ее вполне можно использовать в системе отопления.

По содержанию тяжелых солей дождевая вода намного лучше, чем набранная из самой чистой скважины

    Снизить или даже практически полностью свести к нулю окислительные свойства воды помогают специальные присадки-ингибиторы. Правильное их использование исключит коррозионное поражение металлических деталей и узлов.

    Наконец, в воду добавляются еще и специальные поверхностно-активные присадки (ПАВ). Такие вещества способствуют удалению старых наслоений накипи и ржавчины, недопущению образования новых. ПАВы снижают гидравлическое сопротивление в трубах, что сказывается на экономичности расходования энергоресурсов для отопления. Резко повышается долговечность применяемых в системе уплотнений.

    Какие присадки защитят трубы отопления от коррозии

    Система отопления жилых домов подвержена действию процессов коррозии. Особенно активно её разрушительное действие проявляется в открытых в системах, где применяется открытый не мембранный расширительный бак, а также в многоквартирных домах, так как вода сливается несколько раз в год.

    Кроме конструкций из чёрного металла, коррозии подвержены и алюминиевые элементы. Но их химическое разрушение связано не с попаданием воздуха, а с взаимодействием с ионами меди.

    Как появляется и к чему приводит коррозия в трубах

    С повышением температуры воды на каждые 10 °C её способность вызывать коррозию увеличивается в два раза и уменьшается способность растворять соли CaCO3 и CaSO4, что приводит к ускоренному образованию накипи.

    Однако вред системам отопления наносит не только реакции между различными химическими элементами. Вещества, которые растворены в любой воде, имеют способность оседать и прикрепляться к стенкам водотоков.

    Эти химические процессы способствуют образованию ржавчины и накипи в системе отопления, которые уменьшает просвет труб и их теплоотдачу.

    Одним из альтернативных вариантов избежать этих негативных факторов является замена воды в системе на антифриз, но можно не заменять теплоноситель, а подобрать подходящий ингибитор коррозии. Он имеет полный набор защитных химических элементов, экологически безвреден и доступный по цене.

    Ингибитор коррозии применяется, чтобы предотвратить или замедлить процессы коррозии в системах отопления. Для уменьшения образования накипи применяют различные присадки и реагенты.

    Защита систем отопления

    Ингибиторы можно разделить на несколько классов в зависимости от таких факторов:

    1. Каким способом реагент действует на металл: пассивирующий ингибитор покрывает поверхность, а абсорбирующий вступает во взаимодействие с верхним слоем металла;
    2. От какой агрессивной среды нужно защитить металл: кислотной, сероводородной или нейтральной;
    3. Какой химический состав имеет реагент: органический, неорганический или летучий;
    4. Какие особенности имеет присадка: анодные составы, катодные или комбинированные.

    Особенности применения ингибиторов

    Специально разработанные реагенты для систем отопления имеют такие особенности:

    • Защищают все типы металлов от коррозии;
    • Уменьшают адгезию водорастворимых компонентов;
    • Не допускают образование осадков нерастворимых веществ в системе отопления;
    • Предназначены для использования при температурах выше 100 °C;
    • Срок эффективной защиты — 5 лет;
    • Регент должен занимать 2 — 2,5 % от общего объема теплоносителя в системе отопления. Это значительно снижает затраты на защиту систем обогрева;
    • Добавки содержат летучие вещества, которые при испарении из воды создают защитный слой на поверхностях, не вступающим в прямой контакт с теплоносителем;
    • Присадки не содержат вредных веществ;
    • Замедляют развитие бактерий и водорослей.

    Выбор и рекомендации по применению ингибитора для системы отопления

    Тот или иной ингибитор необходимо выбирать на основании нескольких показателей:

    1. Используется расширительный бачок открытого или закрытого типа;
    2. Тип использованных конструкционных материалов: чёрные металлы, сплавы на основе меди или алюминия;
    3. Показателя pH воды;
    4. Показатели «жесткости» воды (количество растворённых солей в теплоносителе).

    В зависимости от показателей жесткости и кислотности теплоносителя, а также особенностей системы отопления необходимо выбирать ингибитор определенного состава. Выделяют следующие составы присадок:

    • Ортофосфат. Реагент образует защитную пленку, вызывает выпадение солей, при их больших количествах. Добавлять в теплоноситель необходимо исходя из пропорции 10 — 20 мг/л. Используется в системах отопления, где элементы выполнены из чёрных металлов при уровне Ph воды меньше 7,5 единиц. Концентрация хлора в воде 300 мг/л и более нивелирует эффективность ортофосфата и приводит к коррозии металла. Возможно использование в комплексе с цинковой полифосфатной или фосфанатной присадкой;
    • Полифосфаты. Применяют для защиты трубопроводов из чёрных металлов с Ph воды в пределах до 7,5 единиц. Во время использования полифосфата смягчение воды не требуется. Количество хлора тоже не влияет на свойства этого ингибитора. Эффективность действия полифосфатов повышается с помощью цинка. Оптимальное количество 10 — 20 мг/л.;
    • Фосфонаты. Применяют только в комплексе с цинком, ортофосфатами или полифосфатами. Состав будет эффективен при концентрации 10 — 20 мг/л и при Ph 7 — 9. Защита чёрных металлов обеспечивается добавлением кальция;
    • Молибдат. Реагент защищает чёрные и алюминиевые сплавы. Добавлять в теплоноситель необходимо из расчета 75 — 150 мг/л, чтобы уменьшить количество состава без снижения эффективности, требуется добавление фосфорных компонентов. Рекомендуемая Ph воды – 5,5 — 8,5. Жесткая вода вызывает выпадения молибдата в осадок. Хлор и сернистые примеси нивелируют использование молибдата, но без возникновения язвенной коррозии;
    • Силикат. Применяется для мягкой воды в концентрации 10 – 20 мг/л. Обеспечивает защиту систем из чёрных металлов и медных сплавов с водой, имеющей Ph 7 и выше. Защитное покрытие образуется на поверхностях на протяжении нескольких недель;
    • Цинк. Применяется в качестве добавки к другим присадкам: ортофосфатам, полифосфатам, фосфонатам, молибдатам. А также с комбинациями ингибиторов, которые не содержат цинк: ортофосфат/полифосфат, ортофосфат/молибдат, смесь фосфонатов в количестве 0,5 — 2 мг/л. Цинк упрочняет защитную плёнку и позволяет уменьшить количество основного ингибитора. При превышении Ph воды 7,5 необходимо применение стабилизаторов цинка;
    • Бензотриазол. Необходимая концентрация – 1 — 2 мг/л в воде с Ph 6 – 9 для защиты сплавов из меди;
    • Толитриазол. Аналог бензотриазола;
    • Ортофосфат кальция. Используют для устранения налипания осадков фосфатов кальция. Содержание ортофосфата кальция в воде должно составлять 10-15 мг/л.;
    • Полиакрилаты, полималеаты, гидролизованные полиакриламиды и акрилатовые вещества. Используются при биологическом загрязнении. Оптимальная концентрация — 2-3 мг/л.;
    • Хлор и бром применяют для уничтожения микроорганизмов. Достаточно концентрации на урове 0,1 — 0,5 мг/л. Хлор эффективен только в воде с Ph ниже 8. Если pH превышает данный показатель, используют бром;
    • Цеолиты. Применяют для смягчения воды;
    • Нитрит. Используется в закрытых системах, вызывает образование на поверхности устойчивой плёнки окиси железа. Действенный в концентрациях 250-1000 мг/л и повышением Ph до 9 — 9,5, путём добавления буры. Количество нитрита можно уменьшить до 300 мг/л, если использовать молибдат в таком же количестве. Нитриты поддаются разложению бактериями, поэтому в комплексе необходимо также использовать неокисляющийся бактерицид, ингибиторы коррозии меди и полимерный диспергатор;
    • Щелочи (каустическая сода, зола). Используют для повышения Ph воды до 9 – 10,5 единиц.
Ссылка на основную публикацию
Adblock
detector