3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Критерии выбора материала

Критерии выбора материала

9. Машиностроительные материалы. Выбор материала.

Критерии выбора материала:

1. Эксплуатационный – т.е. материал должен удовлетворять условиям работы деталей.

2. Технологический – т.е. материал должен удовлетворять возможности изготовления детали при выбранном технологическом процессе.

3. Экономический – т.е. материал должен быть выгоден с точки зрения стоимости детали.

Детали, размеры которых определяются путем проектировочных расчетов из условия прочности, выполняют из материала с высокими прочностными характеристиками.

Деталь, размеры которой определяются жесткостью, выполняют из материала с высоким модулем упругости.

Деталь, подверженная высоким контактным напряжениям и износу в условиях качения, изготавливают из стали с термообработкой до повышенной твердости.

В условиях скольжения из двух сопряженных деталей, основным критерием для которых является износостойкость, одну деталь изготавливают с более твердой поверхностью.

Сопряженную деталь в антифрикционных узлах (подшипники скольжения) делают из антифрикционного материала. Во фрикционных узлах (тормоза) выполняют из фрикционных материалов. Под антифрикционными понимают материалы (бронза, латунь), характеризующиеся низким коэффициентом трения и высокой износостойкостью. Под фрикционными понимают материалы (металлокерамика, пластмассы на основе асбеста), характеризующиеся высоким коэффициентом трения, высокими износо- и теплостойкостью.

Детали, работающие при высоких температурах, изготавливают из прочных сталей.

Твердый материал в паре с мягким хорошо противостоит заеданию. Хром-резина (при смазывании минеральным маслом и водой), хром-бронза (при пластичных смазочных материалах).

Твердые материалы в паре с твердыми материалами обладают высокой износостойкостью.

Мягкий материал в паре с мягким материалом (никель с никелем) имеет низкую износостойкость.

Пористые спеченные материалы и антифрикционные сплавы применяют в труднодоступных для смазывания узлах трения.

Пластмассы повышают эффективность и надежность узлов трения.

Чугуны – железоуглеродистые сплавы с содержанием углерода 2,14-6%, имеют хорошие литейные свойства, но пониженную пластичность.

Стали – железоуглеродистые сплавы с содержанием углерода до 2,14%. Бывают высоколегированные (10% легирующих компонентов), среднелегированные (2,5-10%) и низколегированные (до 2,5%).

Бронзы – разделяют на оловянные, свинцовые, кремнистые, алюминиевые. Обладают высокими антифрикционными свойствами, хорошим сопротивлением к коррозии.

Латуни – делятся на: двойные сплавы (медь и цинк) и сложные (дополнительно содержащие другие добавки). Отливаются хорошим сопротивлением к коррозии, электропроводностью, прочностью, хорошими технологическими свойствами.

Баббиты – сплавы на основе мягких металлов (олово, свинец, кальций).

Легкие сплавы – это сплавы с малой плотностью (не более 3,5 г/см 3 ) на алюминиевой или магниевой основе.

Биметаллы – состоят из двух и более слоев. Удовлетворяют требованиям к сердцевине изделий, например, прочность и жесткость, и к поверхностным слоям. Их применение приводит к большой экономии дорогих сплавов.

Композиционно-металлические материалы – изготавливаются из высокопрочных волокон и основы из мягких металлов.

Пластмассы – материалы на основе высокомолекулярных органических соединений, обладающие пластичностью, позволяющей формовать изделия.

Резина – материал на основе натурального или синтетического каучука. Обладают свойством обратимой деформации, рассеивают при деформации энергию, хорошо гасят колебания, обладают сопротивлением к истиранию.

Порошковые материалы – керамика, поликристаллические материалы, основанные на соединении неметаллов друг с другом.

Критерии выбора материала

Критерии выбора материала

Свойства – это количественная или качественная характеристика материала, определяющая его общность или различие с другими материалами.
Выделяют три основные группы свойств: эксплуатационные, технологические и стоимостные, которые лежат в основе выбора материала и определяют техническую и экономическую целесообразность его применения. Первостепенное значение имеют эксплуатационные свойства.
Эксплуатационными называют свойства материала, которые определяют работоспособность деталей машин, приборов и инструментов, их силовые, скоростные, стоимостные и другие технико-эксплуатационные показатели.
Работоспособность подавляющего большинства деталей машин и изделий обеспечивает уровень механических свойств, которые характеризуют поведение материала под действием внешней нагрузки. Так как условия нагружения деталей машин разнообразны, то механические свойства включают большую группу показателей.
В зависимости от изменения во времени нагрузки подразделяют на статические и динамические. Статическое нагружение характеризуется малой скоростью изменения своей величины, а динамические нагрузки изменяются во времени с большими скоростями, например, при ударном нагружении. Кроме того, нагрузки подразделяют на растягивающие, сжимающие, изгибающие, скручивающие и срезывающие. Изменение нагрузки может иметь периодически повторяющийся характер, вследствие чего их называют повторно- переменными или циклическими. В условиях эксплуатации машин воздействие перечисленных нагрузок может проявляться в различных сочетаниях.
Под воздействием внешних нагрузок, а также структурно-фазовых превращений в материале конструкций возникают внутренние силы, которые могут быть выражены через внешние нагрузки. Внутренние силы, приходящиеся на единицу площади поперечного сечения тела, называют напряжениями. Введение понятия напряжений позволяет проводить расчеты на прочность конструкций и их элементов.
В простейшем случае осевого растяжения цилиндрического стержня напряжение σ опеределяют как отношение растягивающее силы Р к начальной площади поперечного сечения F o , т.е.

σ = P/F o

Действие внешних сил приводит к деформации тела, т.е. к изменению его размером и формы. Деформация, исчезающая после разгрузки, называется упругой, а остающаяся в теле – пластической (остаточной).
Работоспособность отдельной группы деталей машин зависит не только от механических свойств, но и от сопротивления воздействию химически активной рабочей среды, если такое воздействие становится значительным, то определяющим становятся физико-химические свойства материала – жаростойкость и коррозионная стойкость.
Жаростойкость характеризует способность материала противостоять химической коррозии в атмосфере сухих газов при высокой температуре. У металлов нагрев сопровождается образованием на поверхности оксидного слоя (окалины).
Коррозионная стойкость – это способность металла противостоять электрохимический коррозии, которая развивается при наличие жидкой среды на поверхности металла и ее электрохимической неоднородности.
Для некоторых деталей машин, важные значение имеют физические свойства, характеризующие поведение материалов в магнитных, электрических и тепловых полях, а также под воздействием потоков высокой энергии или радиации. Их принято подразделять на магнитные, электрические, теплофизические и радиационные.
Способность материала подвергаться различным методам горячей и холодной обработки определяют по технологическим свойствам. К ним относят литейные свойства, деформируемость, свариваемость и обрабатываемость режущим инструментом. Технологические свойства позволяют производить формоизменяющую обработку и получать заготовки и детали машин.
К последней группе основных свойств относится стоимость материала, которая оценивает экономичность его использования. Ее количественным показателем является – оптовая цена – стоимость единицы массы материалы в виде слитков, профилей, порошка, штучных и сварных заготовок, по которым завод-изготовитель реализует свою продукцию машиностроительным и приборостроительным предприятиям.

Механические свойства, определяемые при статических нагрузках

Механические свойства характеризуют сопротивление материала деформации, разрушению или особенность его поведения в процессе разрушения. Эта группа свойств включает показатели прочности, жесткости (упругости), пластичности, твердости и вязкости. Основную группу таких показателей составляют стандартные характеристики механических свойств, которые определяют в лабораторных условиях на образцах стандартных размеров. Полученные при таких испытаниях показатели механических свойств оценивают поведение материалов под внешней нагрузкой без учета конструкции детали и условий эксплуатации.
По способу приложения нагрузок различают статические испытания на растяжение, сжатие, изгиб, кручение, сдвиг или срез. Наиболее распространены испытания на растяжения (ГОСТ 1497-84), которые дают возможность определить несколько важных показателей механических свойств.

Испытание на растяжение. При растяжении стандартных образцов с площадью поперечного сечения F o и рабочей (расчетной) длиной l o строят диаграмму растяжения в координатах: нагрузка – удлинение образца (рис.1). На диаграмме выделяют три участка: упругой деформации до нагрузки Р упр .; равномерной пластической деформации от Р упр. до Р max и сосредоточенной пластической деформации от Р max до Р к . Прямолинейной участок сохраняется до нагрузки, соответствующей пределу пропорциональности Рпц. Тангенс угла наклона прямолинейного участка характеризует модуль упругости первого рода Е.

Рис. 1. Диаграмма растяжения пластичного металла (а) и диаграммы
условных напряжений пластичного (б) и хрупкого (в) металлов.
Диаграмма истинных напряжений (штриховая линия) дана для сравнения.

Пластическая деформация выше Рупр. идет при возрастающей нагрузке, так как металл в процессе деформирования упрочняется. Упрочнение материала при деформации называется наклепом.

Читать еще:  Кровельные материалы для плоской крыши

Наклеп металла увеличивается до момента разрыва образца, хотя растягивающая нагрузка при этом уменьшается от Р max до Рк (рис.1, а). Это объясняется появлением в образце местного утонения-шейки, в котором в основном сосредотачивается пластическая деформация. Несмотря на уменьшение нагрузки, растягивающие напряжения в шейке повышается до тех пор, пока образец не разрушится.
При растяжении образец удлиняется, а его поперечное сечение непрерывно уменьшается. Истинное напряжение определяются делением действующей в определенный момент нагрузки на площадь, которую образец имеет в этот момент (рис.1,б). Эти напряжения в повседневной практике не определяют, а пользуются условиями напряжениями, считая, что поперечное сечение F o образца остается неизменным.

Напряжения σ упр., σ т, σ в — стандартные характеристики прочности. Каждая получается делением соответствующей нагрузки Рупр. Рт и Р max на начальную площадь поперечного сечения F о .

Пределом упругости σ упр. называют напряжение, при котором пластическая деформация достигает значений 0,005; 0,02 и 0,05%. Соответствующие пределы упругости обозначают σ 0,005, σ 0,02, σ 0,05 .

Условный предел текучести – это напряжение, которому соответствует пластическая деформация равная 0,2%; его обозначают σ 0,2 . Физический предел текучести σ т определяют по диаграмме растяжения, когда на ней имеется площадка текучести. Однако, при испытаниях на растяжение у большинства сплавов нет площадки текучести на диаграммах. Выбранная пластическая деформация 0,2% достаточно точно характеризует переход от упругих деформаций к пластическим.

Временное сопротивление характеризует максимальную несущую способность материала, его прочность, предшествующую разрушению:

Пластичность характеризуется относительным удлинением δ и относительным сужением ψ:

где l k -конечная длина образца; l о и F o – начальная длина и площадь поперечного сечения образца; F к – площадь поперечного сечения в месте разрыва.
Для малопластичных материалов испытания на растяжение (рис. 1,в) вызывают значительные затруднения. Такие материалы, как правило, подвергают испытаниям на изгиб.

Испытание на изгиб. При испытании на изгиб в образце возникают как растягивающие, так и сжимающие напряжения. На изгиб испытывают чугуны, инструментальные стали, стали после поверхностного упрочнения и керамику. Определяемыми характеристиками служат предел прочности и стрела прогиба.

Предел прочности при изгибе вычисляют по формуле:

где М – наибольший изгибающий момент; W – момент сопротивления сечения, для образа круглого сечения

(где d – диаметр образца), а для образцов прямоугольного сечения W = bh 2 /6 , где b, h – ширина и высота образца).
Испытания на твердость . Под твердостью понимается способность материала сопротивляться внедрению в его поверхность твердого тела – индентора. В качестве индентора используют закаленный стальной шарик или алмазный наконечник в виде конуса или пирамиды. При вдавливании поверхностные слои материала испытывают значительную пластическую деформацию. После снятия нагрузки на поверхности остается отпечаток. Особенность происходящей пластической деформации состоит в том, что вблизи наконечника возникает сложное напряженное состояние, близкое к всестороннему неравномерному сжатию. По этой причине пластическую деформацию испытывают не только пластические, но и хрупкие материалы.
Таким образом, твердость характеризует сопротивление материала пластической деформации. Такое же сопротивление оценивает и временное сопротивление , при определении которого возникает сосредоточенная деформация в области шейки. Поэтому для целого ряда материалов численные значения твердости и временного сопротивления пропорциональны. На практике широко применяют четыре метода измерения твердости: твердость по Бринеллю, твердость по Виккерсу, твердость по Роквеллу и микротвердость.
При определении твердости по Бринеллю (ГОСТ 9012-59) в поверхность образца вдавливают закаленный шарик диаметром 10; 5 или 2,5 мм при действии нагрузки от 5000Н до 30000Н. После снятия нагрузки на поверхности образуется отпечаток в виде сферической лунки диаметром d.
При измерении твердости по Бринеллю используют заранее составленные таблицы, указывающие число твердости НВ В зависимости от диаметра отпечатка и выбранной нагрузки, чем меньше диаметр отпечатка, тем выше твердость.
Способ измерения по Бринеллю используют для сталей с твердостью σ в » 3,4 НВ – для горячекатаных углеродистых сталей;
σ в » 4,5 НВ – для медных сплавов;
σ в » 3,5 НВ – для алюминиевых сплавов.
При стандартном методе измерения по Виккерсу (ГОСТ 2999-75) в поверхность образца вдавливают четырехгранную алмазную пирамиду с углом при вершине 139°. Отпечаток получается в виде квадрата, диагональ которого измеряют после снятия нагрузки. Число твердости НV определяют с помощью специальных таблиц по значению диагонали отпечатка при выбранной нагрузке.

Метод Виккерса применяют главным образом для материалов, имеющих высокую твердость, а также для испытания на твердость деталей малых сечений или тонких поверхностных слоев. Как правило, используют небольшие нагрузки: 10,30,50,100,200,500 Н. Чем тоньше сечение детали или исследуемый слой, тем меньше выбирают нагрузку.
Число твердости по Виккерсу и по Бринеллю для материалов, имеющих твердость до 450 НВ, практически совпадают.
Измерение твердости по Роквеллу (ГОСТ 9013-59) наиболее универсален и наименее трудоемок. Число твердости зависит от глубины вдавливания наконечника, в качестве которого используют алмазный конус с углом при вершине 120 0 или стальной шарик диаметром 1,588 мм. Для различных комбинаций нагрузок и наконечников прибор Роквелла имеет три измерительных шкалы: А.В.С. Твердость по Роквеллу обозначают цифрами, определяющими уровень твердости, и буквами HR с указанием шкалы твердости, например: 70HRA, 58HRC, 50HRB. Числа твердости по Роквеллу не имеют точных соотношений с числами твердости по Бринеллю и Виккерсу.
Шкала А (наконечник – алмазный конус, общая нагрузка 600Н). Эту шкалу применяют для особо твердых материалов, для тонких листовых материалов или тонких (0,6-1,0 мм) слоев. Пределы измерения твердости по этой шкале 70-85.
Шкала В (наконечник – стальной шарик, общая нагрузка 1000Н). При этой шкале определяют твердость сравнительно мягких материалов (

Механические свойства, определяемые при динамических нагрузках

КС = К / S 1 , [МДж/м 2 ],

где S 1 , площадь поперечного сечения образца в месте надреза.

Рис. 2. Схема маятникова копра (а) и испытание на удар (б):
1 – образец; 2 – маятник; 3 – шкала; 4 – стрелка шкалы; 5- тормоз.

Механические свойства, определяемые при переменных циклических нагрузках

Критерии выбора полимерных материалов

Термин «полимерные материалы» является обобщающим. Он объединяет три обширных группы синтетических пластиков, а именно: полимеры; пластмассы и их морфологическую разновидность — полимерные композиционные материалы (ПКМ) или, как их еще называют, армированные пластики. Общее для перечисленных групп то, что их обязательной частью является полимерная составляющая, которая и определяет основные термодеформационные и технологические свойства материала. Полимерная составляющая представляет собой органическое высокомолекулярное соединение, полученное в результате химической реакции между молекулами исходных низкомолекулярных веществ — мономеров.

Выбор пластмассы для изготовления конкретного изделия определяется его эксплуатационными условиями. Критерии выбора разнообразны и зависят от назначения изделия. Основными критериальными характеристиками полимерных материалов являются механические (прочность, жесткость, твердость), температурные (изменения механических и деформационных характеристик при нагревании или охлаждении) и электрические. Последние отражают широкое применение пластмасс в радиоэлектронной и электротехнической отраслях. Кроме того, существенное значение приобрели триботехнические характеристики и ряд специальных свойств (огнестойкость, звукопоглощение, оптические особенности, химическая стойкость). Немаловажны также экономические условия (стоимость полимерного материала, тираж изделия, условия производства).

Механические свойства.

Механические свойства определяют поведение физического тела под действием приложенного к нему усилия. Численно это поведение оценивается прочностью и деформативностью. Прочность характеризует сопротивляемость разрушению, а деформативность — изменение размеров полимерного тела, вызванное приложенной к нему нагрузкой. Поскольку и прочность и деформация являются функцией одной независимой переменной — внешнего усилия, то механические свойства еще называют деформационно-прочностными.

Модуль упругости является интегральной характеристикой, дающей представление прежде всего о жесткости конструкционного материала. Ударная вязкость характеризует способность материалов сопротивляться нагрузкам, приложенным с большой скоростью. В практике оценки свойств пластмасс наибольшее применение нашло испытание поперечным ударом, реализуемым на маятниковых копрах.

Твердость определяет механические свойства поверхности и является одной из дополнительных характеристик полимерных материалов. По твердости оценивают возможные пути эффективного применения пластиков. Пластмассы мягкие, эластичные, имеющие низкую твердость, используются в качестве герметизирующих, уплотнительных и прокладочных материалов. Твердые и прочные могут применяться в производстве деталей конструкционного назначения: зубчатых колес и венцов, тяжело нагруженных подшипников, деталей резьбовых соединений и пр.

Читать еще:  Коэффициенты теплоотдачи материалов

Таблица «Механические свойства термопластов общего назначения».

Таблица «Механические свойства конструкционных термопластов».


Температурные характеристики.

Нередко при выборе полимерного материала учет его теплового поведения бывает более важным, чем оценка прочностных особенностей. Температура эксплуатации пластмассового изделия влияет на значения разрушающих напряжений, деформативности, модуля упругости, твердости, ударной вязкости и других свойств, существенно корректирующих потребительские характеристики. Часто эта корректировка оказывается не в пользу полимерного материала.

Таблица «Температурные характеристики термопластов общего назначения».

Таблица «Температурные характеристики конструкционных термопластов».


Таблица «Температурные характеристики термопластов с повышенной теплостойкость».


Теплофизические свойства.

Теплофизические свойства имеют исключительно большое значение для определения практической ценности полимерных материалов.

Параметры, относящиеся к теплофизическим свойствам, условно разделяются на две группы. Первая — определяет внешнее поведение полимерного тела при изменении температуры. К ней, прежде всего, относится тепловое расширение или дилатометрические свойства. Вторая — устанавливает внутреннюю реакцию материала на тепловое воздействие. Интенсивность каждого вида реакции определяется соответствующим теплофизическим коэффициентом (ТФК). Коэффициент теплового расширения — подразумевает общее изменение размеров физического тела в функции температуры.

Коэффициент теплопроводности численно равен количеству тепла, переносимого через единицу изотермической поверхности за единицу времени при градиенте температуры, равном единице. Коэффициент температуропроводности а является параметром, характеризующим теплоинерционные свойства материала. Чем больше значение а, тем быстрее происходит выравнивание температуры во всех точках тела. Соответственно, чем ниже величина а, тем лучшим теплоизолятором является материал. Знание температуропроводности необходимо в технологических целях для оценки времени охлаждения изделий, получаемых из расплава полимера или из его размягченной заготовки (метод формования), для оценки поведения полимерной детали в нестандартных тепловых полях.

Таблица «Теплофизические свойства полимерных материалов».

Химическая стойкость

Перечень агрессивных агентов, влияющих на свойства полимерных материалов, чрезвычайно широк, но тем не менее может быть систематизирован в наиболее часто встречающиеся группы. Это минеральные и органические кислоты, а также растворы последних в воде, растворы щелочей и окислителей, алифатические и ароматические растворители, горюче-смазочные материалы. Воздействие агрессивной среды на полимер может сопровождаться его набуханием, диффузией среды в полимер и химическим взаимодействием, приводящим к деструкции пластика. На определение стойкости полимерного материала к агрессивным средам существуют государственные стандарты, характеризующие сопротивляемость в баллах. Чем значимее балл — тем выше сопротивляемость материала воздействию агрессивной среды. По ГОСТу 12020 стойкость к агрессивным средам оценивается по изменению их массы, причем по пятибалльной шкале: 5 — высокая стойкость; 4 — удовлетворительная; 3 — материал устойчив не во всех случаях; 2 — стойкость недостаточна, к применению не рекомендуется; 1 — материал не стоек и быстро разрушается.

Высокой химической инертностью и стойкостью к деструкции обладают фторопласты. Марки фторопластов Ф-4, Ф-4 НТД, Ф-3, Ф-40 стойки ко всем средам. Значительную химстойкость демонстрируют и такие полиолефины, как ПЭНП, ПЭВП и ПП, а также непластифицированный ПВХ. Несколько уступает им по этому качеству ПК и полистирольные пластики (ПС). Гетероцепные полимеры типа полиамидов склонны к гидролитической деструкции и активному набуханию вследствие своей гидрофильности. Нестоек к агрессивным средам конструкционный термопласт — полиформальдегид. Термореактивные пластики чувствительны к щелочным средам и растворам окислителей.

Вместе с тем в химическом аппаратостроении широко используются высоконаполненные порошковым графитом (асбестом) антегмиты и фаолиты, полученные на основе фенолоформальдегидного или фенолоальдегидного связующего.

Армированные полимерные материалы могут эксплуатироваться длительное время в кислотах и растворах щелочей концентрацией до 10%, а также в растворителях и горючесмазочных материалах.

Электрические свойства.

Под электрическими свойствами понимают совокупность параметров, характеризующих поведение пластмассы в электромагнитном поле. В прикладном значении наиболее часто используются следующие параметры: диэлектрическая проницаемость, диэлектрические потери, тангенс угла диэлектрических потерь, электрическая проводимость и электрическая прочность, а также трекингостойкость.

Диэлектрическая проницаемость e является параметром, равным отношению емкости электрического конденсатора, между обкладками которого — полимерный материал, к емкости того же конденсатора, между обкладками которого вакуум или воздух. По величине e все полимерные материалы условно подразделяются на группы:

— неполярные 1,8 4,0

Условность разделения заключается в том, что электрические свойства пластмасс сильно зависят от внешних условий — температуры, влажности, степени ионизации окружающей среды, напряженности электрического поля, силы тока и других. При стандартизованных измерениях частота электромагнитного поля —10 Гц, температура — 20 0С, относительная влажность воздуха — 60%.

Горючесть пластмасс.

Основным показателем, определяющим горючесть пластмасс, является стойкость к горению (ГОСТ 28157-89) – способность материала противодействовать пламени. Пожаровзрывоопасность пластмасс – совокупность свойств, характеризующих их способность к возникновению и распространению горения, определяется следующими показателями (ГОСТ 12.1.044-89):

Группа горючести – классификационная характеристика способности веществ и материалов к горению;

температура воспламенения – наименьшая температура вещества, при которой в условиях специальных испытаний вещество выделяет горючие пары и газы с такой скоростью, что при воздействии на них источника зажигания наблюдается воспламенение;

Температура самовоспламенения – наименьшая температура окружающей среды, при которой в условиях специальных испытаний наблюдается самовоспламенение вещества;

температура тления – температура вещества, при которой происходит резкое увеличение скорости экзотермических реакций окисления, заканчивающихся возникновением тления;

Условия теплового самовозгорания – экспериментально выявленная зависимость между температурой окружающей среды, количеством вещества и временем до момента его самовозгорания;

Кислородный индекс – минимальное содержание кислорода в кислородно-азотной смеси, при котором возможно свечеобразное горение материала в условиях специальных испытаний; коэффициент дымообразования – показатель, характеризующий оптическую плотность дыма, образующегося при пламенном горении или термоокислительной деструкции (тлении) определённого количества твёрдого вещества в условиях специальных испытаний;

Индекс распространения пламени – условный безразмерный показатель, характеризующий способность веществ воспламеняться, распространять пламя на поверхности и выделять тепло; показатель токсичности продуктов горения – отношение количества материала к единице объёма замкнутого пространства, в котором образующиеся при горении материала газообразные продукты вызывают гибель 50% подопытных животных.

Словарь.

Самовоспламенение – резкое увеличение скорости экзотермических объёмных реакций, сопровождающееся пламенным горением и/или взрывом.

Тление – беспламенное горение твёрдого вещества при сравнительно низких температурах, часто сопровождающееся выделением дыма.

Самовозгорание – резкое увеличение скорости экзотермических процессов в веществе, приводящее к возникновению очага горения.

Основы конструкционной прочности и критерии выбора материалов

К первой группе относятся коррозионно-стойкие и высокопрочные сплавы типа мельхиор (МНЖМц30-1-1), нейзильбер (МНЦ15-20), куниаль (МНА13-3). В качестве дополнительных легирующих элементов в них добавляют Mn, Al, Zn, Fe, Co, Pb. Изготавливают из этих сплавов украшения, столовые и чайные приборы.

— сплав монель, содержащий 66 % Ni + 28 % Cu + Mn + Fe. Он применяется для изготовления монет, хирургического инструмента, так как обладает высокой коррозионной стойкостью, прочностью, хорошей обрабатываемостью.

9.2. Алюминиевые сплавы

Алюминий — один из наиболее легких конструкционных металлов (ρ = 2,7кг/м 3 ). Он обладает высокой пластичностью. В чистом виде алюминий имеет небольшую прочность, кристаллическую решётку ГЦК с параметром а = 0,404 Нм и обладает высокой коррозионной стойкостью из-за образования на поверхности пленки, содержащей химическое соединение Al2O3.

Алюминий и его сплавы используют в качестве проводниковых материалов (провода в быту). Электропроводность равна 34*10 Ом -1 * см -1 , что составляет 57 % от электропроводности меди. В электротехнике используют алюминий марок A00 (99,7 %), А0 (99,6 %) и Al(99,5 %).

По технологическому признаку алюминиевые сплавы делятся на деформируемые (термически не упрочняемые и упрочняемые) и литейные (рис. 18.1).

Рис. 18.1. Классификация алюминиевых сплавов по диаграмме состояния (а) и технологические свойства сплавов с ограниченной

Читать еще:  Колодец из подручных материалов

растворимостью (б – г)

Как видно из рисунка 18.1. различные участки диаграммы соответствуют:

1 – сплавам, не упрочняемым термической обработкой;

2 – сплавам, упрочняемым термической обработкой;

3 – изменению пластичности;

I – образованию рассеянных пор;

II- образованию сконцентрированных пор.

К деформируемым алюминиевым сплавам относятся:

— сплавы алюминия с марганцем АМц (АМц3) и сплавы алюминия с магнием АМг (Амг6). Марганец и магний повышают прочность алюминия в три раза. Используют эти сплавы при изготовлении сварных емкостей для горючего, азотной и других кислот, трубопроводов, средне-нагруженных деталей конструкций;

— дюралюмины — сплавы алюминия с медью (2,2-4,8 %),магнием (0,4-2,4 %), марганцем (0,4-0,8 %). Это термически упрочняемые сплавы. Обозначение дюралюминов: Д1, Д6, Д16 (номера условные).

Для защиты дюралюминов от коррозии используют так называемое плакирование (покрытие тонким защитным слоем из чистого алюминия);

сплав В95 — наиболее прочный алюминиевый сплав (2 % Си, 2,5 % Mg, 0,5 % Mn; 6 % Zn, 0,15 % Сr, 0,5 %Si, 0,5 % Fe) и используется он для изготовления элементов летательных аппаратов;

— ковочные сплaвы (АК) для деталей, изготавливаемых ковкой и давлением. Обозначение: АК1, АК5 (номер условный).

Эти сплавы обладают способностью сохранять механические свойства при повышенных температурах.

К литейным алюминиевым сплавам относятся сплавы алюминия с кремнием (так называемые силумины), содержащие 4-13 % Si.

Силумины маркируют: АЛ2, АЛ13 (порядковый номер). Применяют такие сплавы для изготовления литых деталей приборов, корпусов турбонасосов, тонкостенных отливок сложной формы.

В настоящее время вводится единая цифровая маркировка алюминиевых сплавов. Первая цифра обозначает основу всех сплавов (алюминию присвоена цифра 1); вторая – главный легирующий элемент или группа главных легирующих элементов; третья или третья со второй – соответствует старой маркировке; четвертая цифра – нечетная (включая 0) указывает, что сплав деформируемый, четная – что сплав литейный.

Например, сплав Д1 обозначают 1110, Д16 – 1160, АК4 1140, Амг5 – 1550, АК6- 1360 и т. д. Некоторые новые сплавы имеют только цифровую маркировку – 1915, 1925 и др.

9.3. Магниевые сплавы

В качестве легирующих добавок в магниевых сплавах используют алюминий, цинк и марганец, растворяющиеся в магнии. Растворимость падает с уменьшением температуры, что позволяет применять для этих сплавов термическую обработку, заключающуюся в закалке с последующим старением.

Магниевые сплавы делятся на деформируемые (МА) и литейные (МЛ). Эти сплавы очень легкие и используются для изготовления деталей в авиастроении.

9.4. Титан и его сплавы.

Титан – это серебристо-белый металл с малой плотностью (4,5 г/см 3 ) и высокой температурой плавления (1672 оС ), имеющий две аллотропические модификации: α – низкотемпературную с плотноупакованной гексагональной решёткой и β – высокотемпературную с кубической объёмноцентрированной решёткой. Температура перехода α ↔ β равна 882 о С.

Для улучшения прочностных и пластических свойств титан легируется различными элементами, содержание которых, в общей сложности, не превышает 10 –15 %. Легирующие элементы смещают температуру аллотропического превращения титана. Алюминий, кислород, азот, углерод стабилизируют α –фазу ; железо, молибден, тантал, вольфрам, хром, марганец, никель стабилизируют β –фазу;

Титан имеет высокую коррозионную стойкость в большом количестве агрессивных сред, превосходя в этом отношении нержавеющую сталь. При нагреве до 500 о С титан становится активным и поглощает из атмосферы газы (кислород, азот, водород), что сильно влияет на его механические свойства.

Технический титан маркируется в зависимости от содержания примесей: BT1-00 (сумма примесей менее 0,398 %), ВТ1-0 (сумма примесей менее 0,55 %).

Титановые сплавы классифицируются:

— по технологии изготовления на деформируемые, литейные и изготовленные методами порошковой металлургии. Для маркировки деформируемых титановых сплавов используется буквенно-цифровой код:

— ОТ4-0, ОТ4-1, ОТ4 — сплавы, в которых основными легирующими добавками являются алюминий и марганец;

— ВТ5, ВТ5-1, ВТ3-1, ВТ6, ВТ9 и т.д. – сплавы, легированные алюминием или алюминием и вольфрамом.

Стоящие за буквами цифры являются условным порядковым номером.

Особенности маркировки литейных титановых сплавов – наличие буквы Л в конце обозначения марки: ВТ5Л, ВТ3-1Л и др.

Для изготовления деталей методом порошковой металлургии используют сплавы ВТ5, ВТ5-1, ОТ4 и др. Порошковые сплавы маркируются так же, как и деформируемые.

Литейные сплавы титана обладают более низкими механическими свойствами, чем соответствующие деформируемые;

— по способу упрочнения на термически упрочняемые и не упрочняемые термической обработкой;

— по структуре на однофазные α – сплавы (не содержат b-стабилизаторов); псевдо –а — сплавы (коэффициент b- стабилизации не более 0,25); (a + b)-сплавы (коэффициент b-стабилизации от 0,3 до 0,9); псевдо-b-сплавы (коэффициент b-стабилизации от 1,4 до 4,4) и b-сплавы (коэффициент b-стабилизации > 2,5).

Преимуществом титановых сплавов, по сравнению с техническим титаном, являются следующие свойства:

— сочетание высокой прочности (σв = 800-1500 МПа) с хорошей пластичностью (δ = 18-25 %);

— малая плотность и высокая удельная прочность (σв/γ до 40);

— хорошая жаропрочность (до 600-700 о С);

— высокая коррозионная стойкость;

— низкая пластичность при комнатной температуре;

— высокая чувствительность к поверхностным дефектам.

Все титановые сплавы подвергаются термообработке, ХТО и ТМО и для повышения их износостойкости возможно применение цементации и азотирования.

Основными недостатками титана и его сплавов являются:

— высокая способность при повышенных температурах к взаимодействию со всеми газами, а также с материалами плавильных печей;

— невысокие антифрикционные свойства;

— плохая обрабатываемость резанием;

— невысокая жесткость конструкции из-за низкого значения модуля упругости.

Титановые сплавы используют в авиа- и ракетостроении (корпуса двигателей, баллоны для газов, сопла, диски, детали крепежа, фюзеляжа), в химической промышленности (компрессоры, клапаны, вентили), в изготовлении криогенной техники.

В результате испытаний получают характеристики:

силовые (предел пропорциональности, предел упругости, предел текучести,

предел прочности, предел выносливости);

деформационные (относительное удлинение, относительное сужение);

энергетические (ударная вязкость).

Все они характеризуют общую прочность материала независимо от назначения,

конструкции и условий эксплуатации. Высокое качество детали может быть достигнуто

только при учете всех особенностей, которые имеют место в процессе работы детали, и которые определяют ее конструкционную прочность.

Конструкционная прочность – комплекс прочностных свойств, которые находятся в наибольшей корреляции со служебными свойствами данного изделия, обеспечивают длительную и надежную работу материала в условиях эксплуатации.

На конструкционную прочность влияют следующие факторы:

· конструкционные особенности детали (форма и размеры);

· механизмы различных видов разрушения детали;

· состояние материала в поверхностном слое детали;

· процессы, происходящие в поверхностном слое детали, приводящие к отказам при работе.

Необходимым условием создания качественных конструкций при экономном использовании материала является учет дополнительных критериев, влияющих на конструкционную прочность. Этими критериями являются надежность и долговечность.

Надежность – свойство изделий, выполнять заданные функции, сохраняя

эксплуатационные показатели в заданных пределах в течение требуемого времени или сопротивление материала хрупкому разрушению.

Развитие хрупкого разрушения происходит при низких температурах, при наличии трещин, при повышеннных остаточных напряжениях, а также при развитии усталостных процессов и коррозии.

Критериями, определяющими надежность, являются температурные пороги хладоломкости, сопротивление распространению трещин, ударная вязкость, характеристики пластичности, живучесть.

Долговечность – способность детали сохранять работоспособность до

Долговечность определяется усталостью металла, процессами износа, коррозии и другими, которые вызывают постепенное разрушение и не влекут аварийных последствий, то есть условиями работы.

Критериями, определяющими долговечность, являются усталостная прочность, износостойкость, сопротивление коррозии, контактная прочность.

Общими принципами выбора критериев для оценки конструкционной прочностиявляются:

· аналогия вида напряженного состояния в испытываемых образцах и изделиях;

· аналогия условий испытания образцов и условий эксплуатации (температура,

среда, порядок нагружения;

· аналогия характера разрушения и вида излома в образце и изделии.

Дата добавления: 2014-01-05 ; Просмотров: 825 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector